Table of Contents
1. Introduction
· 1.1 Motivation
· 1.2 Problems
· 1.3 Vision
· 1.3.1 Design
· 1.3.2 Processes
· 1.3.3 Equipment and materials
· 1.3.4 Maintenance an repair
· 1.4 Contents of the book
2. UCIS – Underground construction information system
· 2.1 Introduction
· 2.2 UCIS – Underground construction information system
· 2.2.1 Objectives
· 2.2.2 Architecture
· 2.2.3 Design and development
· 2.2.4 Data model
· 2.2.5 3D ground model
· 2.3 Introduction
· 2.4 Contribution to the overall project
· 2.5 Workflow
· 2.6 Geometrical data: software implementation
· 2.7 Geological & geomechanical attributes: classification
· 2.8 Geological & geotechnical database
· 2.9 Data link geometrical data – geological/ geotechnical objects
· 2.10 Subsurface models
· 2.10.1 UCIS – Applications
· 2.11 KRONOS – tunnel information system
· 2.12 KRONOS-WEB – monitoring data reporting and alarming system
· 2.13 Decision support system for cyclic tunnelling
· 2.14 Web-based information system on underground construction projects
· 2.15 Virtual reality visualisation system
· 2.16 Summary
3. Computer-support for the design of underground structures
· 3.1 Introduction
· 3.2 State-of-the-art in tunnel design
· 3.3 The applied design concept
· 3.3.1 Design method
· 3.3.2 Analysis of the possible degree of automation
· 3.3.3 Automation concept
· 3.4 Rule base for tunnel pre-design
· 3.4.1 Determination of the ground behaviour
· 3.4.2 Determination of suitable excavation methods and support measures
· 3.5 Key input parameters
· 3.6 Support classes
· 3.7 Energy classes
· 3.8 Excavation methods
· 3.9 Refinement for shield tunneling
· 3.9.1 General workflow embedded in the rule base
· 3.9.2 Determination of time and costs
· 3.10 Integrated optimization platform for underground construction
· 3.10.1 Realization/implementation
· 3.11 Graphical user interface
· 3.12 3D-Ground model
· 3.13 Rule base
· 3.14 Numerical simulation software
· 3.14.1 Background information and software technology
· 3.15 Summary
4. A virtual reality visualisation system for underground construction
· 4.1 Introduction
· 4.1.1 Virtual reality
· 4.1.2 Augmented reality
· 4.1.3 Mixed reality
· 4.1.4 Capacity of today’s VR-, AR- and MR-systems
· 4.2 A Virtual reality visualisation system for underground construction
· 4.2.1 Objective
· 4.2.2 Input data
· 4.2.3 VR software
· 4.2.4 VR hardware
· 4.2.5 Application example
· 4.3 Summary
· 4.4 Outlook, augmented reality in tunnelling
5. From laboratory, geological and TBM data to input parameters for simulation models
· 5.1 Introduction
· 5.2 A hierarchical, relational and web-driven Rock Mechanics Database
· 5.2.1 Introduction
· 5.2.2 Test data reduction methodology
· 5.2.3 A failure criterion for rocks
· 5.2.4 Example calibration of lab test rock parameters to model parameters of the HMC constitutive model (Level-B of analysis)
· 5.2.5 Structure of the rock mechanics database
· 5.3 Geometrical and geostatistical discretization of geological solids
· 5.3.1 Introduction
· 5.3.2 Solid modeling
· 5.3.3 Geostatistical modeling
· 5.4 A special upscaling theory of rock mass parameters
· 5.4.1 Introduction
· 5.4.2 A special upscaling theory for rock masses
· 5.4.3 Illustrative upscaling example
· 5.5 Back-analysis of tbm logged data
· 5.5.1 Introduction
· 5.5.2 Basic relationships
· 5.5.3 An example of backward analysis
· 5.6 Conclusions
6. Process-oriented numerical simulation of mechanised tunnelling
· 6.1 Introduction
· 6.1.1 Requirements for computational models for mechanised tunnel construction
· 6.1.2 Novel computational framework for process-oriented simulations in mechanised tunnelling as part of an integrated decision support system
· 6.2 Three-phase model for partially saturated soil
· 6.2.1 Theory of porous media
· 6.2.2 Governing balance equations
· 6.2.3 Constitutive relations for hydraulic behaviour
· 6.2.4 Stress-strain behaviour of soil skeleton
· 6.3 Finite element formulation of the multiphase model for soft soils
· 6.3.1 Spatial and temporal discretization
· 6.3.2 Object-oriented implementation
· 6.4 Selection of soil models and parameters
· 6.4.1 Saturated soil model
· 6.4.2 Unsaturated soil model
· 6.4.3 Cemented soil model
· 6.4.4 Double hardening soil model
· 6.5 Verification of the three-phase model for soft soils
· 6.5.1 Consolidation test
· 6.5.2 Drying test
· 6.6 Components of the finite element model for mechanised tunnelling
· 6.6.1 Heading face support
· 6.6.2 Frictional contact between TBM and soil
· 6.6.3 Tail void grouting
· 6.6.4 Shield machine, hydraulic jacks, lining and backup trailer
· 6.7 Model generation and simulation procedure
· 6.7.1 Automatic model generation
· 6.7.2 Mesh adaption for TBM advance and steering of shield machine
· 6.7.3 Interface to IOPT
· 6.7.4 Parallelisation concept
· 6.8 Sensitivity analysis and parameter identification
· 6.8.1 Numerical approximation of sensitivity terms
· 6.8.2 Analytical sensitivities derived by the direct differentiation method
· 6.8.3 Adjoint method for deriving analytical sensitivities
· 6.8.4 Implementation of analytical sensitivity methods
· 6.8.5 Optimisation of process parameters
· 6.8.6 Inverse analyses for estimation of unknown parameters
· 6.8.7 Current state and outlook for further developments in sensitivity analyses
· 6.9 Selected applications of the simulation model for mechanised tunnelling
· 6.9.1 Numerical simulation of compressed air support
· 6.9.2 Numerical simulation of changing pressure conditions at the heading face
· 6.9.3 Numerical simulation of the Mas Blau section of L9 of Metro Barcelona
· 6.10 Conclusions
7. Computer simulation of conventional construction
· 7.1 Introduction
· 7.2 A new simulation paradigm
· 7.3 Preprocessor
· 7.4 The boundary element method
· 7.4.1 Sequential excavation
· 7.5 Example – sequential tunnel excavation
· 7.5.1 Non-linear material behavior
· 7.6 Non-linear BEM
· 7.7 The non-linear solution algorithm
· 7.8 Hierarchical constitutive model
· 7.9 Example
· 7.9.1 Heterogeneous ground and ground improvement methods
· 7.10 Introduction
· 7.11 Consideration of geological conditions
· 7.12 Pipe roofs
· 7.13 Examples
· 7.13.1 Rock bolts
· 7.14 Introduction
· 7.15 Fully grouted rock bolts
· 7.16 Discrete anchored bolts
· 7.17 Examples
· 7.17.1 Shotcrete and steel arches
· 7.18 Introduction
· 7.19 Shotcrete as an assembly of shell finite elements
· 7.20 Steel arches as an assembly of beam finite elements
· 7.21 Optimization of code and adaptation to special hardware
· 7.21.1 Computational complexity
· 7.21.2 Iterative solvers
· 7.21.3 Fast methods
· 7.21.4 Modern hardware – parallelization
· 7.22 Practical application
· 7.22.1 The koralm tunnel
8. Optical fiber sensing cable for underground settlement monitoring during tunneling
· 8.1 Introduction
· 8.1.1 Tunnel construction with tunnel boring machines
· 8.1.2 Risk associated to tunneling in urban areas
· 8.1.3 State of the art
· 8.1.4 Research frame
· 8.1.5 Settlement to be measured
· 8.1.6 Developed solutions
· 8.2 Sensors based on deformation of optical fibres
· 8.2.1 General principles
· 8.2.2 Brillouin technology
· 8.2.3 Fiber embedded at the periphery of a cable or a tube
· 8.2.4 Cable environment
· 8.2.5 Development of an industrial process
· 8.3 Sensing element
· 8.4 15 mm diameter cable
· 8.5 150 mm diameter cable
· 8.6 Sensors based on slope measurement
· 8.7 Sensor validation
· 8.7.1 Geometric validation in open air
· 8.8 Bench test
· 8.9 Optical fiber validation
· 8.10 TBMSET validation
· 8.10.1 Geometric validation in buried material – cairo tests
· 8.11 Presentation of cairo project
· 8.12 Test area
· 8.13 Settlement gauges network
· 8.14 Installation of the test area
· 8.15 On site data acquisition from sensing elements
· 8.16 Job site data
· 8.17 Settlement gauges
· 8.18 Validation of pipe behavior inside the ground
· 8.19 Impact of grout injection on the settlement
· 8.20 Optical fiber results
· 8.21 TBMSET results
· 8.22 Conclusion
9. Tunnel seismic exploration and its validation based on data from TBM control and observed geology
· 9.1 Introduction
· 9.2 Seismic exploration during tunneling
· 9.2.1 Challenges
· 9.2.2 Finite-difference simulations of seismic data
· 9.3 Description of the discrete model
· 9.4 Modeling results
· 9.4.1 Short outline of seismic data processing
· 9.5 Pre-processing
· 9.6 Migration and velocity analysis
· 9.7 Use of TBM data and geology for seismic data validation
· 9.8 Conclusions
10. Advances in the steering of Tunnel Boring Machines
· 10.1 Introduction
· 10.1.1 Motivation
· 10.1.2 Solution concept
· 10.2 Analysis of relevant steering parameters
· 10.2.1 TBM control and monitoring systems – state of the art
· 10.3 Systems for subsidence monitoring
· 10.4 Monitoring systems for geodetic survey of the machine position and orientation
· 10.5 Steering system for the control parameters of the tunnelling machine
· 10.5.1 Induced surface deformations and control parameters during shield drive
· 10.6 Subsidence in front of the cutter head (advanced subsidence)
· 10.7 Subsidence in the area of the shield
· 10.8 Subsidence associated with annular gap grouting
· 10.9 Subsidence after hardening of the annular gap mortar (subsequent subsidence)
· 10.9.1 Expert rules for subsidence control
· 10.10 Steering system
· 10.10.1 Requirements
· 10.10.2 Solution concept and system architecture
· 10.10.3 Fuzzy logic expert system and reasoning
· 10.11 Rules
· 10.12 Fuzzy logic data evaluation
· 10.12.1 Software system developed
· 10.12.2 verification and validation
· 10.13 Incident management system
· 10.13.1 General
· 10.13.2 Causes for incidents
· 10.14 Geology and hydrology
· 10.15 Shield machine
· 10.16 Operation errors
· 10.16.1 Development of the incident catalogue
· 10.16.2 Description of the incident management system
· 10.16.3 Showcase example in detail
· 10.16.4 Automated detection of incidents
· 10.17 Conclusion
11. Real-time geological mapping of the front face
· 11.1 Introduction
· 11.2 State of the art
· 11.3 Technological solution
· 11.3.1 Objectives
· 11.3.2 Specifications
· 11.3.3 Technological choices
· 11.4 Disc cutter and housing
· 11.5 Overall description
· 11.6 Monitored parameters
· 11.7 Disc cutter modeling
· 11.8 Mobydic monitoring
· 11.9 Applications
· 11.9.1 Lock ma shau tunnel
· 11.9.2 A41
· 11.10 Conclusion
12. Reducing the environmental impact of tunnel boring (OSCAR)
· 12.1 Introduction
· 12.2 State of the art
· 12.2.1 Historical context
· 12.2.2 Tunnel construction with tunnel boring machine
· 12.2.3 Soil conditioning for EPB machine
· 12.3 Research project description
· 12.3.1 Objective
· 12.3.2 The overall objective of these tests isto define the specific additive properties versus specific situations, e.g. soil, confinement pressure, soil permeability, and to develop adapted foams. A computer program has been written for the right selection the foam dosage. Selected tests
· 12.4 Oscar reactor
· 12.4.1 OSCAR general view
· 12.4.2 The reactor
· 12.4.3 Screw conveyor
· 12.4.4 Baroïd water loss filter (Garcia, IFP)
· 12.4.5 Direct output
· 12.4.6 Foam production (Fig. 11)
· 12.5 Test results
· 12.5.1 Soil
· 12.6 Soil types
· 12.7 Clay
· 12.8 Silt
· 12.9 Sand
· 12.10 Mixed soil
· 12.11 Soil with gypsum content
· 12.12 Soil conditioning
· 12.12.1 Additives
· 12.13 Surfactants
· 12.14 Foam design rules
· 12.15 Specifications of foams
· 12.16 Polymers
· 12.17 Other additives
· 12.18 Specification of foams
· 12.19 Input required and calculation of foam parameters
· 12.20 Atmospheric tests
· 12.21 Hyperbaric Tests
· 12.22 Foam dosage computation
· 12.23 Proposed draft standard
· 12.23.1 Ground sampling
· 12.23.2 Cutter head sealant
· 12.23.3 Soil conditioning test
· 12.24 Step 1: Atmospheric tests
· 12.25 Step 2: Atmospheric tests
· 12.26 Step 3: Pressurized tests
· 12.27 Conclusion
13. Safety assessment during construction of shotcrete tunnel shells using micromechanical material models
· 13.1 Introduction
· 13.2 Modeling cementitious materials in the framework of continuum micromechanics
· 13.2.1 Fundamentals of micromechanics – Representative volume element (RVE)
· 13.2.2 Micromechanical representation of cementitious materials
· 13.2.3 Elasticity and strength of cementitious materials
· 13.3 Morphological representation of hydration products in cement paste
· 13.4 Strength of cement paste
· 13.5 Strength of shotcrete
· 13.6 Experimental validation of micromechanics-based material models
· 13.6.1 Mixture-dependent shotcrete composition
· 13.6.2 Experimental validation on cement paste level
· 13.6.3 Experimental validation on shotcrete level
· 13.7 Micromechanics-based characterization of shotcrete: Influence of water-cement and aggregate-cement ratios on elasticity and strength evolutions
· 13.8 Continuum micromechanics-based safety assessment of natm tunnel shells
· 13.8.1 Water-cement ratio-dependence of structural safety
· 13.8.2 Aggregate-cement ratio-dependence of structural safety
· 13.9 Conclusions
14. Observed segment behaviour during tunnel advance
· 14.1 Introduction
· 14.2 Organization of the chapter
· 14.3 Forces on the EPB machine
· 14.3.1 Excavation mode
· 14.3.2 Ring mounting mode
· 14.4 Eccentricity of the Jack’s total thrust
· 14.5 Backfill mortar injection pressures
· 14.6 Study of several cases
· 14.6.1 Collection and treatment of data
· 14.6.2 Geological considerations
· 14.6.3 Comparison between theoretical and EPB machine registered thrusts
· 14.6.4 Registered eccentricities
· 14.6.5 Tests to measure the pressure on the segments using pressure sensors
· 14.7 Conclusions
· 14.7.1 Definition of the forces acting on the EPB machine.
· 14.7.2 Effects of the eccentricity of the resultant of thrusting forces
· 14.7.3 Distribution of the backfill mortar pressures
15. Optimizing rock cutting through computer simulation
· 15.1 Introduction
· 15.2 Tool–rock interaction
· 15.3 Wear of rock cutting tools
· 15.4 Thermomechanical model of rock cutting
· 15.5 Wear model
· 15.6 Determination of rock model parameters
· 15.7 Simulation of rock cutting laboratory test
· 15.8 Simulation of rock cutting with wear evaluation
· 15.9 3D simulation of the laboratory test of rock cutting
· 15.10 Simulation of the linear cutting test
· 15.11 Conclusions
16. Innovative roadheader technology for safe and economic tunnelling
· 16.1 Roadheaders – state of the art
· 16.1.1 Tunneling with roadheaders
· 16.1.2 The principle of roadheader operation
· 16.1.3 Roadheader components
· 16.2 Overview
· 16.3 Cutter head, picks
· 16.3.1 Roadheader application
· 16.3.2 Roadheader selection
· 16.4 Rock parameters
· 16.5 Profile size – mode of application
· 16.6 One-step face excavation
· 16.7 Multi-step excavation of larger sections
· 16.8 Application in difficult ground conditions
· 16.8.1 Application example: Mont Cenis Tunnel/France–Italy
· 16.8.2 Application example: Metro Montreal Project, Lot C 04/Canada
· 16.9 The new roadheader generation – features and benefits
· 16.9.1 New technology
· 16.9.2 Integrated guidance system
· 16.10 Introduction
· 16.11 System principle
· 16.11.1 Improved sandvik cutting technology
· 16.12 Introduction
· 16.13 Pick-rock interaction
· 16.14 Numerical simulation
· 16.15 Outlook
17. Tube-à-manchette installation using horizontal directional drilling for soil grouting
· 17.1 Introduction
· 17.2 development of an articulated double packer
· 17.3 development of a blocking system for the sealing grout
· 17.4 design of the test
· 17.5 test development
· 17.5.1 Phase 1: Initial works
· 17.5.2 Phase 2: Horizontal directional drilling
· 17.5.3 Phase 3: Steel casing installation
· 17.5.4 Phase 4: Steel casing extraction
· 17.5.5 Phase 5: Injection of the grout bag
· 17.5.6 Phase 6: Annular sheath grouting
· 17.5.7 Phase 8: Ground injection
· 17.6 Summary
18. TBM technology for large to very large tunnel profiles
· 18.1 Introduction
· 18.2 Two mixshields for the railway tunnel access route to the brenner base tunnel
· 18.3 Two double shielded hard rock TBMs for the Brisbane North South Bypass Tunnel (NSBT)
· 18.4 Trend of very large diameter tunnel profiles
· 18.4.1 Largest earth pressure balance shield (Ø15.2M) used for the M30 road tunnel project in Madrid
· 18.4.2 Largest mixshield (Ø15.4 m) used for the Changjiang under river tunnel project in Shanghai
· 18.5 Tunconstruct activities
19. Real-time monitoring of the shotcreting process
· 19.1 Introduction
· 19.2 Monitoring the shotcreting process
· 19.2.1 Pumping variables
· 19.2.2 Spraying variables
· 19.3 Final remarks
20. Environmentally friendly, customised sprayed concrete
· 20.1 Introduction
· 20.2 Performance-based approach
· 20.3 Indicators chosen and their meanings
· 20.3.1 Constituent materials and mix proportions
· 20.3.2 Full scale sample preparation and tests conducted
· 20.4 Advantages of the approach: selected results
· 20.5 Final remarks and conclusions
· 20.6 Abbreviations
21. Innovations in shotcrete mixes
· 21.1 Introduction
· 21.2 Innovations
· 21.2.1 New components materials PB criterion
· 21.2.2 New special superplasticizer and nozzle accelerator
· 21.3 Special superplasticizer
· 21.4 Nozzle accelerator
· 21.4.1 New SM Automation of shotcrete machine
· 21.4.2 New admixture dosing unit
· 21.5 Shotcrete simplified mix design rules program
· 21.5.1 MDR (Mix Design Rules)
· 21.5.2 SMD (Shotcrete Mix design)
· 21.5.3 RER Validation factor
· 21.6 Summary
22. High performance and ultra high performance concrete segments – development and testing
· 22.1 Introduction
· 22.2 Development and laboratory testing
· 22.2.1 Basic recipe development
· 22.2.2 Derivation of design parameters and re-calculation
· 22.2.3 Comparative calculations
· 22.2.4 Checking of fire resistant behavior
· 22.2.5 Testing of industrial segment production
· 22.3 Real scale tests
· 22.3.1 General
· 22.3.2 Segment load bearing test
· 22.4 General
· 22.5 Test stand (Fig. 22.8)
· 22.6 Measurement
· 22.7 Conducting the segment load bearing test
· 22.7.1 Diaphragm load test
· 22.8 General
· 22.9 Test stand (Fig. 22.12)
· 22.10 Measurement
· 22.11 Conducting the diaphragm load test
· 22.11.1 Torsional rigidity test
· 22.12 General
· 22.13 Test stand (Fig. 22.14)
· 22.14 Measurement
· 22.15 Conducting the torsional rigidity test
· 22.16 First test results
· 22.17 Summary
23. Robotic tunnel inspection and repair
· 23.1 Introduction
· 23.2 Dragarita robot for fast inspection
· 23.3 IRIS: Integrated robotic inspection and maintenance system
· 23.3.1 Maintenance operations
· 23.3.2 Integrated process automation
· 23.3.3 Laboratory and field tests
· 23.4 Conclusions
24. An innovative geotechnical characterization method for deep exploration
· 24.1 Introduction
· 24.2 Background
· 24.3 Rock mass characterization with the stackable logging tools
· 24.3.1 Field tests
· 24.3.2 Rock quality estimation and borehole geophysical logging
· 24.4 Summary and conclusions